Analog-to-Digital Conversion

To achieve a good result with an A/D conversion you need to assure three things:

> Aliasing must be avoided. It can only be avoided in the
1.) The anti-aliasing filter. . .

Make sure $f_{\text {nyquist }}>f_{\max }$ so that all your signal makes it through the anti-aliasing filter.
Make $f_{\text {nyquist }}$ as low as is practical to reject as much noise as possible.
This step is harder than it looks. No filter is perfect, thus typically $f_{\text {nyquist }}>1.1 f_{\text {max }}$ or more.
Typical error: Omit the anti-aliasing filter and try to average out or digitally filter out the noise later.
There is absolutely no hope for a good result if the anti-aliasing filter is not an analog filter. . . located in front of the sampler.
2.) M ake sure $f_{s}>2 f_{\text {nyquist }}$

Pretty easy with today's high-speed electronics.
To make the anti-aliasing filter simpler sometimes $f_{s} \gg 2 f_{\text {nyquist }}$, say 10 or even thousands of times more.
This is called oversampling.
Oversampling implies that you let some analog noise get converted to digital noise.
A digital filter can remove this kind of digital noise because it was at a digital frequency of less than one-half.
Any noise above $f_{\text {nyquist }}$ cannot be removed with a digital filter! It is indistinguishable from the desired signal.
3.) Your quantization range has to be a reasonable span of $f_{s a}(n)$'s signal amplitude's bound.

Is your digital frequency greater than one-half? Oops!

1

W einterrupt this program for a special message.

3

H onest scales and balances belong to the LO RD; all the weights in the bag are of his making. Proverbs 16:11

Thesis:

The L ord has an unusual concern for honest measures and correspondingly has provided a generous benevolence of grace to humanity in the form of providential standards of measurement

Conference paper, page 119 or 125 at http://www.christianengineering.org/publications/cecproceedings/CEC\ 2019\ P roceedings.pdf?attredirects=0\&d=1

Conference slides in file http://www.christianengineering.org/publications/cecproceedings/CEC\ 2019\ P resentations.zip?attredirects=0\&d=1 in file "Session 5 - DeB oer. . ."

5

Tour of some of the more typical sensors used with embedded systems

Time (NIST time via WWV, via Internet; based on a crystal, based on resonance—pendulum. . .) Temperature (Thermistor, RTD, "Precision Temperature Sensor," thermocouple, Infrared camera. . .) Pressure (Bourdon tube, bellows, manometer, Piezoelectric crystal, resonance (for compressible fluids). . ., Angle (absolute vs. relative using light, inductance, resistance, capacitance, . . . Displacement (proximity) (similar to angle measurements except "unwrap" the circle into a line) Force (weight) (spring deflection, strain gauge, buoyancy e.g. marks on side of a ship)
Fluid flow (hot wire, Pelton wheel, rotary piston or gear, oscillatory piston, inline-turbine, ultrasonic Doppler, var. orifice. . .) Etcetera, etcetera. . .

The variety of sensors available is overwhelming.

Another approach: What are the "elements" of sensors that make them work? If we understand how each of these work, then we understand how all the above sensors work. This is what your basic physics and chemistry courses are about.

This course cannot possibly cover all of this.
Just be aware that getting to know the guts of how various sensors work at a fundamental level pays dividends when you need to learn about a new sensor.

Techniques in temperature measurement.

Thermistor

Portmanteau of "Thermal Resistor."
Definition: A thermistor is a resistor designed to have a calibrated temperature dependence.
A relationship between the temperature and the resistance is specified.

A simple linear relationship could be specified as. . .

$$
\Delta R=k \Delta T
$$

Where ΔR is the change in resistance from a specified nominal amount of resistance, e.g. a " $10 \mathrm{k} \Omega$ thermistor"
ΔT is the change in the temperature from a specified nominal temperature, e.g. "at 20 C "
k is the specified temperature coefficient, a constant. (in units such as $\Omega / \mathrm{C}, 20 \Omega /$ C plausible at 20 C)
Other relationshipsmay be specified, for example the Steinhart-Hart relationship or the "beta relationship."
Two types: Positive and Negative temperature coefficient.
Positive: As temperature rises, resistance also rises. $k>0$, also known as "PTC" thermistors
Negative: As temperature rises, resistance falls. $k<0$, also known as "NTC" thermistors
Various materials are used to make thermistors, dependingon the desired temperature range and environment.
PTC: doped ceramic, doped silicon, plastics with embedded carbon granules. NTC: sintered metal oxide-various metals.

Techniques in temperature measurement.

Thermistor-typical connections

Put the thermistor in series with its nominal resistance.
(Our thermistor is nominally $10 \mathrm{k} \Omega$ at 25 C .)
This resistance is called the precision reference resistor.
Measure the voltage across the precision reference resistor, V_{R}.
M easure the voltage across the thermistor, $V_{t h}$.
The current through the precision reference resistor is the same as the current through the thermistor because the voltage sensing wires draw no measurable current.
Use the above measurements to calculate the resistance of the thermistor.

$$
\begin{gathered}
i=\frac{V_{R}}{R_{P}} \\
R_{\text {th }}=\frac{V_{t h}}{i}=R_{P} \frac{V_{\text {th }}}{V_{R}}
\end{gathered}
$$

Use
The Steinhart-Hart relationship models most thermistors.

$$
\frac{1}{T}=A+B \ln \left(R_{t h}\right)+C\left[\ln \left(R_{t h}\right)\right]^{3}
$$

Where $T=$ temp in K, $R_{\text {th }}=$ thermistor resistance in Ω, and A, B, C are the Steinhart-Hart coefficients-from a datasheet.
9

Techniques in temperature measurement.
Thermistor-better connections

A four-wire resistancemeasurement would be better, but our NI equipment cannot do it. (But most mid-grade and up DM M 's can do this and communicate the measurement back to the computer.)

A Wheatstone bridge is also sometimesused, but is now rather archaic in the face of modern digital instrumentation. In older plants, these things still exist-very durable.

A particular issue with thermistors: The current you send through the thermistor in order to measure its resistance heats the thermistor! This current must remain insignificant.

Techniques in temperature measurement.

Resistance temperature-detector

Technically, this is a type of thermistor, but usually it is considered as a type of its own, not a subset of thermistors.
As for a thermistor, a linear model can be used over a limited temperature range.
The beta equation or the Steinhart-Hart give better results.
Wire it up and use it (electrically) just like a thermistor.
RTDs can be distinguished from thermistors by one important property:
An RTD is a (nearly) pure metal, not a semiconductor or alloyed metal.
(Carbon is counted as a metal, but not silicon for this application.)
Advantages: One of the most accurate technologiesfor temperatures below the melting point of the metal. Stable over time, especially RTDs from noble metals such as platinum.

Disadvantage: Weak signal relative to a thermistor. (Typical thermistor, $\sim 1 \Omega /$ Cchange at room temperature.)

11

Techniques in temperature measurement.

Precision temperature sensor

(also known as an integrated circuit temperature sensor or a silicon band-gap temperature sensor.)

The base-current of a transistor is $I_{B}=I_{S}\left(e^{V_{B E} / V_{T}}-1\right)$ where I_{S} is the reverse-saturation current.
V_{T} is the thermal voltage (hint, hint!)
This can be approximated as $I_{B}=I_{S}\left(e^{V_{B E} / V_{T}}\right)$
Solving for the base-emitter voltage of a silicon transistorgives $V_{B E}=V_{T} \ln \left(I_{B} / I_{S}\right)=V_{T}\left[\ln \left(I_{B}\right)-\ln \left(I_{S}\right)\right]$
The thermal voltage is given by $V_{T}=k T / Q$ where $k=$ Boltzmann's constant
$q=$ magnitude of the charge on an electron
$r=$ the current density in the base of a transistor.

Operate two identical transistors which are in thermal contact with each other at different current levels

$$
\begin{gathered}
V_{B E 1}-V_{B E 2}=\frac{k T}{Q}\left[\ln \left(I_{B 1}\right)-\ln \left(I_{B 2}\right)\right] \\
T=\Delta V_{B E}\left(\frac{Q}{k}\right) \ln \left(I_{B 2} / I_{B 1}\right)
\end{gathered}
$$

Techniques in temperature measurement.
Precision temperature sensor
(also known as an integrated circuit temperature sensor or a silicon band-gap temperature sensor.)

$$
T=\Delta V_{B E}\left(\frac{Q}{k}\right) \ln \left(I_{B 2} / I_{B 1}\right)
$$

Thus, an integrated circuit that uses a basic property of silicon to sense temperature.
The sensor uses analog or digital electronics to "do the math" and calculate the temperature.
The temperature is then presented as some type of signal. The Analog Devices AD590 produces a current.
Output of the Analog Devices (brand) AD590 (part number) is. . .
At $25 \mathrm{C}, 298.2 \mu \mathrm{~A}$
For every degree Cof deviation from there, $1 \mu \mathrm{~A} /$ Cchange in the output current.
Hook it up as shown at the right.
At 25 C the current through the $1 \mathrm{k} \Omega$ resistor will be 0.2982 mA
The voltage will be 0.2982 V and will vary $0.001 \mathrm{~V} / \mathrm{C}$.
The +5 V source does not have to be very accurate or stable (4 Vto 30 V acceptable). The typical power supply for a microcontroller will be good enough.

13

Techniques in temperature measurement.

Precision temperature sensor

(also known as an integrated circuit temperature sensor or a silicon band-gap temperature sensor.)

$$
T=\Delta V_{B E}\left(\frac{Q}{k}\right) \ln \left(I_{B 2} / I_{B 1}\right)
$$

Thus, an integrated circuit that uses a basic property of silicon to sense temperature.
The sensor uses analog or digital electronics to "do the math" and calculate the temperature.
The temperature is then presented as some type of signal.
Output of the ADT7302 is. . .
In digital form, on an SPI bus.
Connects directly to most microcontrollers Examples: Connects directly to Arduino, Raspberry PI, etc.
Can be found for $\$ 1.00$
± 2 Caccuracy with no calibration needed.

Techniques in temperature measurement.

Thermocouple

Definition: A thermocouple is a series connection of two dissimilar metals such that there are two electrical junctions back-to-back and located in two different places.

The metals produce a voltage that is mathematically related to the difference of the temperatures of the junctions.

In practice, one of the junctions is placed at the location where a temperature measurement is desired.
Operation is based on the Seebeck effect, $\Delta V=-S(T) \Delta T$ where S, a function of T is the Seebeck coefficient.

15

Techniques in temperature measurement.

Thermocouple

Definition: A thermocouple is a series connection of two dissimilar metals such that there are two electrical junctions back-to-back and located in two different places.

The metals produce a voltage that is mathematically related to the difference of the temperatures of the junctions.

In practice, one of the junctions is placed at the location where a temperature measurement is desired.

Operation is based on the Seebeck effect, $\Delta V=-S(T) \Delta T$ where S, a function of T is the Seebeck coefficient.

Techniques in temperature measurement.

Thermocouple

The Seebeck effect cannot be measured directly because we need to connect the metals of the thermocouple to a voltmeter, and that makes more junctions.

If we want to know the temperature of J_{1} then we also need to know the temperature of J_{2}.
The classic technique of knowing the temperature of J_{2} is to immerse it in a mixture of ice and water.
(The water must be pure, and the ice must be made from the pure water, so the mixture is at exactly 0 C .)

Techniques in temperature measurement.

Thermocouple

The Seebeck effect cannot be measured directly because we need to connect the metals of the thermocouple to a voltmeter, and that makes more junctions.

If we want to know the temperature of J_{1} then we also need to know the temperature of J_{2}.
The classic technique of knowing the temperature of J_{2} is to immerse it in a mixture of ice and water.
(The water must be pure, and the ice must be made from the pure water, so the mixture is at exactly 0 C .)

Techniques in temperature measurement.

Thermocouple

The Seebeck effect cannot be measured directly because we need to connect the metals of the thermocouple to a voltmeter, and that makes more junctions.

Well. . . That ice-bath stuff sounds messy, high maintenance, not portable. . .
Enter the electronic referencejunction.
It is a block of metal alloyed to match the type of thermocouple you will be using. Its temperature is known. Often the temperature is measured via a precision temp sensor built into it. Instead of being an ice-bath, it is a "reference-junction-temperature bath." The measured temperature is now a difference from the reference junction temperature.

Electronic reference junctions are now almost universally used.
The electronic reference junction. . .
Is made of specialized metals to match the thermocouple.
Is made such that both of its terminals are at an equal and a known temperature.

Techniques in temperature measurement.

Thermocouple

Electronic reference junctions are now almost universally used.
The electronic reference junction...
Is made of specialized metals to match the thermocouple.
Is made such that both of its terminals are at an equal and a known temperature.
All of the above can be obtained in one instrument.
The instrument can be fitted with a multiplexer such that many thermocouples can be connected.
The instrument can be connected to a computer via Wi-Fi, Bluetooth, Xbee, Ethernet, USB, RS-232, etc.

Techniques in temperature measurement.

Observations about temperature measurement:
Measurements from about -50 Cto about 150 C
with accuracy of about $\pm 2 \mathrm{C}$
and precision of about $\pm 0.1 \mathrm{C}$
are routine and inexpensive now. (ADT7302 is about $\$ 3.00$ in single quantities, $<\$ 1.00$ each in quantity)
Use a precision temperature sensor with a digital (SPI or I2C or Dallas One-W ire) output if possible.
Texas Instruments TM P102, M axim DS18B20, Analog Devices ADT7302
Otherwise use a precision temperature sensor with a current output and a precision low-temperature coefficient reference resistor located near the analog input of your system to sample the signal.
Pay attention to range, precision, and digital resolution and make them as suitable as practically possible.
If you need more precision, it is going to get expensive fast. Question the need before taking it on!
(Sometimes people just specify things they "want" with little understanding of the trade-offsinvolved.)
If you need to work at higher temperatures, look to RTDs and thermocouples.
Consider using stand-alone processing equipment to do the A/D conversion.
Although a thermocouple can be purchased for $\$ 5.00$, you will need expensive equipment to get accurate results.

21

Techniques in temperature measurement.
Thermistor-an example
Goal: Automotive engine coolant temperature is to be measured.
Desired range: -50 F to $300 \mathrm{~F}(-45 \mathrm{C}$ to 150 C)
Desired accuracy: 3 F (1.67 C)
Desired precision: ~1 F ($\sim 0.5 \mathrm{C}$)
Search for a sensor: Decision for Texas Instruments LM 34
The datasheet shows the schematic of "Figure 17" for this application:

Figure 17. Full Range Farenheit Sensor ($-50^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}$)

This datasheet specifies an a-typical connection. (below left)

Two analog inputs are needed.
The - input will always be at nearly 1.4 V due to the diodes.
$(-50 \mathrm{~F})\left(10 \frac{\mathrm{mV}}{\mathrm{F}}\right)=-500 \mathrm{mV}=-0.500 \mathrm{Vwrt}-$ terminal
$(300 \mathrm{~F})\left(10 \frac{\mathrm{mV}}{\mathrm{F}}\right)=3000 \mathrm{mV}=3.000 \mathrm{~V}$
At -50 F the +input will be at $1.4 \mathrm{~V}-0.5 \mathrm{~V}=0.9 \mathrm{~V}$
At 300 F the +input will be at $1.4 \mathrm{~V}+3.0 \mathrm{~V}=4.4 \mathrm{~V}$

Techniques in temperature measurement.

Thermistor-an example
Goal: Automotive engine coolant temperature is to be measured.
Desired range: -50 F to 300 F (-45 C to 150 C)
Desired accuracy: 3 F (1.67 C)
Desired precision: $\sim 1 \mathrm{~F}(\sim 0.5 \mathrm{C})$
A search is done for a sensor: Decision for Texas Instruments LM 34

The datasheet shows the schematic of "Figure 17" for this application:
Two analog inputs are needed.
The - input will always be at nearly 1.4 V due to the diodes.
Figure 17. Full Range Farenheit Sensor ($-50^{\circ} \mathrm{F}$ to $300{ }^{\circ} \mathrm{F}$)
At -50 F the + input will be at $1.4 \mathrm{~V}-0.5 \mathrm{~V}=0.9 \mathrm{~V}$
At 300 F the +input will be at $1.4 \mathrm{~V}+3.0 \mathrm{~V}=4.4 \mathrm{~V}$
Arduino Uno has a 6-channel, 10 -bit A/D converter. The range of the converter is 0 to 5 V . (There are a few other choices)
The voltage reference of the Arduino UNO is the +5 V power supply itself.
10 bits means the analogRead() command will return integers between 0 and 1023.
Each 1-bit change of the read value means the input voltage changed by (5 V)/ $1024=0.48828125 \mathrm{mV} \rightarrow \sim 0.5 \mathrm{~F}$
(Precision is better than needed.)
I select channel A0 for the - input and channel A1 for the +input.
Read both, find the difference, multiply by 0.48828125 . The result is the temperature in degrees F

Techniques in temperature measurement.
Thermistor-an example
Goal: Automotive engine coolant temperature is to be measured.
Desired range: -50 F to 300 F (-45 C to 150 C)
Desired accuracy: 3 F (1.67 C)
Desired precision: ~1 F ($\sim 0.5 \mathrm{C})$
A search is done for a sensor: Decision for Texas Instruments \llcorner M 34

The datasheet shows the schematic of "Figure 17" for this application
Arduino Uno has a 6 -channel, 10 -bit A/D converter. The range of the converter is 0 to 5 V . (There are a few other choices) The voltage reference of the Arduino UNO is the +5 V power supply itself.
10 bits means the analogRead() command will return integers between 0 and 1023.
Each 1-bit change of the read value means the input voltage changed by (5 V)/ $1024=0.48828125 \mathrm{mV} \rightarrow \sim 0.5 \mathrm{~F} /$ count (Precision is better than needed.)
I select channel A0 for the - input and channel A1 for the +input.
Read both, find the difference, multiply by 0.48828125 . The result is the temperature in degrees F
Example of reading and computing the temperature;
analogRead (AO) ; gives 291
analogRead (A1) ; gives 814 \qquad The voltage reference for the temperature sensor is 291 counts. $814-291=523$ counts. $(523$ counts $)(0.48828125 \mathrm{~F} /$ count $)=255 \mathrm{~F}=$ engine cool. Temp.

Techniques in temperature measurement.
Thermistor-an example
Goal: Automotive engine coolant temperature is to be measured.
Desired range: -50 F to 300 F (-45 C to 150 C)
Desired accuracy: 3 F (1.67 C)
Desired precision: $\sim 1 \mathrm{~F}(\sim 0.5 \mathrm{C})$
A search is done for a sensor: Decision for Texas Instruments LM 34
The A/D conversion on the Arduino can be visualized along a number line labeled in counts or in volts.

25

Techniques in temperature measurement.

Thermistor-a bad example

We switch to a fictional sensor. It produces $1 \mathrm{mV} / \mathrm{F}$.
To get the negative temperature range we add an offset of 1.4 just as before.
For simplicity we assume everything about this sensor it is perfectly accurate.

The A/D conversion on the Arduino can be visualized along a number line labeled in counts or in volts-no change

The temperature sensor can be visualized as a number line labeled in either volts or degrees F .
The analog reference voltage also is a number line-quite short around 1.4 V.

When this happens the typical cry from the inexperienced engineer is, "We need a better A/D converter. . . Need M ore Bits!" A better solution: Reduce the scale of the A/D converter if possible. (e.g. 0 to 2.0 V) Could also reduce bias of signal.

